Asymptotic estimates for the error of the Gauss-Legendre quadrature formula

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates of the error in Gauss-Legendre quadrature for double integrals

Error estimates are a very important aspect of numerical integration. It is desirable to know what level of truncation error might be expected for a given number of integration points. Here, we determine estimates for the truncation error when Gauss-Legendre quadrature is applied to the numerical evaluation of two dimensional integrals which arise in the boundary element method. Two examples ar...

متن کامل

Error of the Newton-Cotes and Gauss-Legendre Quadrature Formulas

Abstract. It was shown by P. J. Davis that the Newton-Cotes quadrature formula is convergent if the integrand is an analytic function that is regular in a sufficiently large region of the complex plane containing the interval of integration. In the present paper, a bound on the error of the Newton-Cotes quadrature formula for analytic functions is derived. Also the bounds on the Legendre polyno...

متن کامل

Error Estimates for Gauss Quadrature Formulas for Analytic Functions

1. Introduction. The estimation of quadrature errors for analytic functions has been considered by Davis and Rabinowitz [1]. An estimate for the error of the Gaussian quadrature formula for analytic functions was obtained by Davis [2]. McNamee [3] has also discussed the estimation of error of the Gauss-Legendre quadrature for analytic functions. Convergence of the Gaussian quadratures was discu...

متن کامل

Positivity of the Weights of Extended Gauss-Legendre Quadrature Rules

We show that the weights of extended Gauss-Legendre quadrature rules are all positive.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Computer Journal

سال: 1968

ISSN: 0010-4620,1460-2067

DOI: 10.1093/comjnl/11.3.339